Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Head Neck ; 45(8): 1979-1985, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20233770

ABSTRACT

BACKGROUND: To evaluate the impact of coronavirus disease 2019 (COVID-19) pandemic on disease extent in patients with nasopharyngeal carcinoma (NPC) using 18 fuorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance imaging (MRI). METHODS: This retrospective cohort study included biopsy-proven, newly diagnosed NPC patients using whole-body FDG PET/MR staging in two selected intervals: 1 May 2017 to 31 January 2020 (Group A, the pre-COVID-19 period), and 1 February 2020 to 30 June 2021 (Group B, the COVID-19 period). RESULTS: Three-hundred and ninety patients were included. No significant difference was observed in terms of T classification, N classification, overall stage, N stations, and M stations between the two groups (p > 0.05). For the involved neck node levels, more patients had developed level Vc metastasis in the group B (p = 0.044). CONCLUSION: Although the overall stage was not affected, more patients with NPC had developed level Vc metastasis in the era of COVID-19.


Subject(s)
COVID-19 , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/diagnostic imaging , Nasopharyngeal Carcinoma/pathology , Fluorodeoxyglucose F18 , Pandemics , Retrospective Studies , Nasopharyngeal Neoplasms/pathology , Tomography, X-Ray Computed/methods , Neoplasm Staging , Positron-Emission Tomography/methods , Magnetic Resonance Imaging , Radiopharmaceuticals
2.
Curr Atheroscler Rep ; 25(7): 351-357, 2023 07.
Article in English | MEDLINE | ID: covidwho-2317609

ABSTRACT

PURPOSE OF REVIEW: Despite single-photon emission computerized tomography (SPECT) being the most used nuclear imaging technique for diagnosis of coronary artery disease (CAD), many now consider positron emission tomography (PET) as a superior modality. This review will focus on the advances of cardiac PET in recent years and its advantages compared to SPECT in diagnosis and prognosis of CAD. RECENT FINDINGS: PET's higher resolution and enhanced diagnostic accuracy, as well as lower radiation exposure, all help explain the rationale for its wider spread and use. PET also allows for measurement of myocardial blood flow (MBF) and myocardial flow reserve (MFR), which aids in several different clinical scenarios, such as diagnosing multivessel disease or identifying non-responders. PET has also been shown to be useful in diagnosing CAD in various specific populations, such as patients with prior COVID-19 infection, cardiac transplant, and other comorbidities.


Subject(s)
COVID-19 , Coronary Artery Disease , Fractional Flow Reserve, Myocardial , Myocardial Ischemia , Myocardial Perfusion Imaging , Humans , Myocardial Ischemia/diagnostic imaging , Positron-Emission Tomography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Angiography/methods , Prognosis , Myocardial Perfusion Imaging/methods , Fractional Flow Reserve, Myocardial/physiology , COVID-19 Testing
3.
Med Image Anal ; 86: 102787, 2023 05.
Article in English | MEDLINE | ID: covidwho-2308518

ABSTRACT

X-ray computed tomography (CT) and positron emission tomography (PET) are two of the most commonly used medical imaging technologies for the evaluation of many diseases. Full-dose imaging for CT and PET ensures the image quality but usually raises concerns about the potential health risks of radiation exposure. The contradiction between reducing the radiation exposure and remaining diagnostic performance can be addressed effectively by reconstructing the low-dose CT (L-CT) and low-dose PET (L-PET) images to the same high-quality ones as full-dose (F-CT and F-PET). In this paper, we propose an Attention-encoding Integrated Generative Adversarial Network (AIGAN) to achieve efficient and universal full-dose reconstruction for L-CT and L-PET images. AIGAN consists of three modules: the cascade generator, the dual-scale discriminator and the multi-scale spatial fusion module (MSFM). A sequence of consecutive L-CT (L-PET) slices is first fed into the cascade generator that integrates with a generation-encoding-generation pipeline. The generator plays the zero-sum game with the dual-scale discriminator for two stages: the coarse and fine stages. In both stages, the generator generates the estimated F-CT (F-PET) images as like the original F-CT (F-PET) images as possible. After the fine stage, the estimated fine full-dose images are then fed into the MSFM, which fully explores the inter- and intra-slice structural information, to output the final generated full-dose images. Experimental results show that the proposed AIGAN achieves the state-of-the-art performances on commonly used metrics and satisfies the reconstruction needs for clinical standards.


Subject(s)
Image Processing, Computer-Assisted , Positron-Emission Tomography , Humans , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/methods , Tomography, X-Ray Computed/methods , Attention
4.
Clin Imaging ; 99: 10-18, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2305200

ABSTRACT

COVID-19 is a multisystemic disease, and hence its potential manifestations on nuclear medicine imaging can extend beyond the lung. Therefore, it is important for the nuclear medicine physician to recognize these manifestations in the clinic. While FDG-PET/CT is not indicated routinely in COVID-19 evaluation, its unique capability to provide a functional and anatomical assessment of the entire body means that it can be a powerful tool to monitor acute, subacute, and long-term effects of COVID-19. Single-photon scintigraphy is routinely used to assess conditions such as pulmonary embolism, cardiac ischemia, and thyroiditis, and COVID-19 may present in these studies. The most common nuclear imaging finding of COVID-19 vaccination to date is hypermetabolic axillary lymphadenopathy. This may pose important diagnostic and management dilemmas in oncologic patients, particularly those with malignancies where the axilla constitutes a lymphatic drainage area. This article aims to summarize the relevant literature published since the beginning of the pandemic on the intersection between COVID-19 and nuclear medicine.


Subject(s)
COVID-19 , Nuclear Medicine , Humans , Positron Emission Tomography Computed Tomography , COVID-19 Vaccines , Fluorodeoxyglucose F18 , Radionuclide Imaging , Positron-Emission Tomography , Toes
5.
Rheumatol Int ; 43(5): 975-981, 2023 05.
Article in English | MEDLINE | ID: covidwho-2303807

ABSTRACT

Takayasu's arteritis (TA) is a chronic granulomatous vasculitis that predominantly affects the aorta and its major branches. Despite advancements in the understanding of the pathogenic pathways of vascular inflammation, the etiology and predisposing factors of TA remain to be fully understood. In susceptible individuals, exposure to adjuvants may trigger, unlock or unmask an autoimmune disorder, presenting as non-specific constitutional symptoms or a fully developed autoimmune syndrome such as vasculitis. Here, we hypothesize that TA could be triggered by siliconosis, a subtype of the autoimmune/inflammatory syndrome induced by adjuvants (ASIA). ASIA, also known as Shoenfeld syndrome, encompasses a wide range of autoimmune and immune-mediated diseases resulting from dysregulation of the immune response after exposure to agents with adjuvant activity. This case report describes the development of large artery vasculitis, TA, in an individual one year following the placement of silicone breast implants. The patient initially presented with non-specific symptoms, and multiple imaging methods were employed, including ultrasound diagnostics, CT angiography, and 18-fluorodeoxyglucose positron emission tomography/CT. These techniques revealed vasculitic alterations in the carotid arteries and thoracic aorta. Initial treatment with glucocorticosteroids proved ineffective, prompting the addition of steroid-sparing immunosuppressive agents. Due to the distinct clinical symptoms, disease progression, implant-associated fibrosis, and resistance to therapy, the potential involvement of implants in the development of large-vessel vasculitis was considered, and a potential association with ASIA was postulated. Although there is limited evidence to support a direct link between adjuvants and the pathogenesis of TA, similarities in cellular immunity between the two conditions exist. The diagnosis of this complex and potentially debilitating condition requires a comprehensive clinical examination, laboratory evaluation, and instrumental assessment. This will aid in identifying potential contributing factors and ensuring successful treatment.


Subject(s)
Takayasu Arteritis , Humans , Takayasu Arteritis/complications , Takayasu Arteritis/diagnosis , Takayasu Arteritis/drug therapy , Positron-Emission Tomography , Aorta/pathology , Carotid Arteries/pathology , Immunosuppressive Agents/adverse effects , Adjuvants, Immunologic
6.
AJNR Am J Neuroradiol ; 44(5): 517-522, 2023 05.
Article in English | MEDLINE | ID: covidwho-2294074

ABSTRACT

BACKGROUND AND PURPOSE: The pathophysiology of neurologic manifestations of postacute sequelae of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection is not clearly understood. Our aim was to investigate brain metabolic activity on [18F] FDG-PET/CT scans in patients with a history of coronavirus disease 2019 (COVID-19) infection before imaging. MATERIALS AND METHODS: This retrospective study included 45 patients who underwent [18F] FDG-PET/CT imaging for any reason and had, at least once, tested positive for COVID-19 at any time before imaging. Fifteen patients had available [18F] FDG-PET scans obtained under identical conditions before the infection. A group of 52 patients with melanoma or multiple myeloma who underwent [18F] FDG-PET/CT were used as controls. Whole-brain 2-sample t test analysis was performed using SPM software to identify clusters of hypo- and hypermetabolism and compare brain metabolic activity between patients with COVID-19 and controls. Paired sample t test comparison was also performed for 15 patients, and correlations between metabolic values of clusters and clinical data were measured. RESULTS: Compared with the control group, patients with a history of COVID-19 infection exhibited focal areas of hypometabolism in the bilateral frontal, parietal, occipital, and posterior temporal lobes and cerebellum (P = .05 uncorrected at the voxel level, family-wise error-corrected at the cluster level) that peaked during the first 2 months, improved to near-complete recovery around 6 months, and disappeared at 12 months. Hypermetabolism involving the brainstem, cerebellum, limbic structures, frontal cortex, and periventricular white matter was observed only at 2-6 months after infection. Older age, neurologic symptoms, and worse disease severity scores positively correlated with the metabolic changes. CONCLUSIONS: This study demonstrates a profile of time-dependent brain PET hypo- and hypermetabolism in patients with confirmed SARS-CoV-2 infection.


Subject(s)
COVID-19 , Fluorodeoxyglucose F18 , Humans , United States , Fluorodeoxyglucose F18/metabolism , Retrospective Studies , Positron Emission Tomography Computed Tomography , COVID-19/complications , SARS-CoV-2 , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography
7.
Antiviral Res ; 214: 105605, 2023 06.
Article in English | MEDLINE | ID: covidwho-2293609

ABSTRACT

This study compared disease progression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in three different models of golden hamsters: aged (≈60 weeks old) wild-type (WT), young (6 weeks old) WT, and adult (14-22 weeks old) hamsters expressing the human-angiotensin-converting enzyme 2 (hACE2) receptor. After intranasal (IN) exposure to the SARS-CoV-2 Washington isolate (WA01/2020), 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography with computed tomography (18F-FDG PET/CT) was used to monitor disease progression in near real time and animals were euthanized at pre-determined time points to directly compare imaging findings with other disease parameters associated with coronavirus disease 2019 (COVID-19). Consistent with histopathology, 18F-FDG-PET/CT demonstrated that aged WT hamsters exposed to 105 plaque forming units (PFU) developed more severe and protracted pneumonia than young WT hamsters exposed to the same (or lower) dose or hACE2 hamsters exposed to a uniformly lethal dose of virus. Specifically, aged WT hamsters presented with a severe interstitial pneumonia through 8 d post-exposure (PE), while pulmonary regeneration was observed in young WT hamsters at that time. hACE2 hamsters exposed to 100 or 10 PFU virus presented with a minimal to mild hemorrhagic pneumonia but succumbed to SARS-CoV-2-related meningoencephalitis by 6 d PE, suggesting that this model might allow assessment of SARS-CoV-2 infection on the central nervous system (CNS). Our group is the first to use (18F-FDG) PET/CT to differentiate respiratory disease severity ranging from mild to severe in three COVID-19 hamster models. The non-invasive, serial measure of disease progression provided by PET/CT makes it a valuable tool for animal model characterization.


Subject(s)
COVID-19 , Pneumonia , Humans , Animals , Cricetinae , COVID-19/diagnostic imaging , SARS-CoV-2 , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography/methods , Angiotensin-Converting Enzyme 2 , Positron-Emission Tomography , Mesocricetus , Disease Progression
8.
J Neurol ; 270(6): 2853-2856, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2286840

ABSTRACT

BACKGROUND: Encephalitis and myelitis have been linked to both COVID-19 vaccination and infection, causing symptoms such as reduced consciousness, mental state alterations and seizures. Remarkably, most cases do not show significant structural alterations on MRI scans, which poses a diagnostic challenge. METHODS: We present the diagnostic workup and clinical course of a patient who developed a progressive brainstem syndrome two weeks after COVID-19 vaccination and subsequent infection. We used translocator protein (TSPO)-PET scans for the first time to investigate COVID-related neuroinflammation. RESULTS: The patient developed oculomotor disorder, dysarthria, paresthesia in all distal limbs and spastic-atactic gait. CSF analysis revealed mild lymphocytic pleocytosis with normal protein levels. Brain and spinal cord MRI scans were negative, but TSPO/PET scans showed increased microglia activity in the brainstem, which correlated with the clinical course. Steroid treatment led to clinical improvement, but relapse occurred during prednisone taper after four weeks. Plasmapheresis had no significant effect; however, complete remission was achieved with cyclophosphamide and methotrexate, with normal TSPO signal ten months after onset. CONCLUSIONS: TSPO-PET can be a valuable tool in the diagnostic and therapeutic monitoring of COVID-19-related encephalitis, particularly in cases where MRI scans are negative. Aggressive immunosuppressive therapy can lead to sustained remission.


Subject(s)
COVID-19 , Encephalitis , Humans , COVID-19 Vaccines , Receptors, GABA/metabolism , COVID-19/diagnostic imaging , Encephalitis/diagnostic imaging , Encephalitis/metabolism , Brain Stem/diagnostic imaging , Disease Progression , Magnetic Resonance Imaging , Positron-Emission Tomography , COVID-19 Testing
9.
Int J Rheum Dis ; 26(3): 575-576, 2023 03.
Article in English | MEDLINE | ID: covidwho-2266281
10.
PET Clin ; 18(3): 381-388, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2283142

ABSTRACT

Tissue injury in nonmalignant human disease can develop from either disproportionate inflammation or exaggerated fibrotic responses. The molecular and cellular fundamental of these 2 processes, their impact on disease prognosis and the treatment concept deviates fundamentally. Consequently, the synchronous assessment and quantification of these 2 processes in vivo is extremely desirable. Although noninvasive molecular techniques such as 18F-fluorodeoxyglucose PET offer insights into the degree of inflammatory activity, the assessment of the molecular dynamics of fibrosis remains challenging. The 68Ga-fibroblast activation protein inhibitor-46 may improve noninvasive clinical diagnostic performance in patients with both fibroinflammatory pathology and long-term CT-abnormalities after severe COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , Positron-Emission Tomography , Inflammation , Positron Emission Tomography Computed Tomography , Gallium Radioisotopes , Fluorodeoxyglucose F18
11.
Wiley Interdiscip Rev Nanomed Nanobiotechnol ; 14(5): e1807, 2022 09.
Article in English | MEDLINE | ID: covidwho-2287988

ABSTRACT

In recent years, there have been significant innovations in the development of nanoparticle-based vaccines and vaccine delivery systems. For the purposes of both design and evaluation, these nanovaccines are imaged using the wealth of understanding established around medical imaging of nanomaterials. An important insight to the advancement of the field of nanovaccines can be given by an analysis of the design rationale of an imaging platform, as well as the significance of the information provided by imaging. Nanovaccine imaging strategies can be categorized by the imaging modality leveraged, but it is also worth understanding the superiority or convenience of a given modality over others in a given context of a particular nanovaccine. The most important imaging modalities in this endeavor are optical imaging including near-infrared fluorescence imaging (NIRF), emission tomography methods such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) with or without computed tomography (CT) or magnetic resonance (MR), the emerging magnetic particle imaging (MPI), and finally, multimodal applications of imaging which include molecular imaging with magnetic resonance imaging (MRI) and photoacoustic (PA) imaging. One finds that each of these modalities has strengths and weaknesses, but optical and PET imaging tend, in this context, to be currently the most accessible, convenient, and informative modalities. Nevertheless, an important principle is that there is not a one-size-fits-all solution, and that the specific nanovaccine in question must be compatible with a particular imaging modality. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Subject(s)
Nanoparticles , Vaccines , Magnetic Resonance Imaging/methods , Nanomedicine , Positron-Emission Tomography/methods , Tomography, Emission-Computed, Single-Photon/methods
12.
Eur J Nucl Med Mol Imaging ; 50(1): 90-102, 2022 12.
Article in English | MEDLINE | ID: covidwho-2271103

ABSTRACT

PURPOSE: We evaluated brain metabolic dysfunctions and associations with neurological and biological parameters in acute, subacute and chronic COVID-19 phases to provide deeper insights into the pathophysiology of the disease. METHODS: Twenty-six patients with neurological symptoms (neuro-COVID-19) and [18F]FDG-PET were included. Seven patients were acute (< 1 month (m) after onset), 12 subacute (4 ≥ 1-m, 4 ≥ 2-m and 4 ≥ 3-m) and 7 with neuro-post-COVID-19 (3 ≥ 5-m and 4 ≥ 7-9-m). One patient was evaluated longitudinally (acute and 5-m). Brain hypo- and hypermetabolism were analysed at single-subject and group levels. Correlations between severity/extent of brain hypo- and hypermetabolism and biological (oxygen saturation and C-reactive protein) and clinical variables (global cognition and Body Mass Index) were assessed. RESULTS: The "fronto-insular cortex" emerged as the hypometabolic hallmark of neuro-COVID-19. Acute patients showed the most severe hypometabolism affecting several cortical regions. Three-m and 5-m patients showed a progressive reduction of hypometabolism, with limited frontal clusters. After 7-9 months, no brain hypometabolism was detected. The patient evaluated longitudinally showed a diffuse brain hypometabolism in the acute phase, almost recovered after 5 months. Brain hypometabolism correlated with cognitive dysfunction, low blood saturation and high inflammatory status. Hypermetabolism in the brainstem, cerebellum, hippocampus and amygdala persisted over time and correlated with inflammation status. CONCLUSION: Synergistic effects of systemic virus-mediated inflammation and transient hypoxia yield a dysfunction of the fronto-insular cortex, a signature of CNS involvement in neuro-COVID-19. This brain dysfunction is likely to be transient and almost reversible. The long-lasting brain hypermetabolism seems to reflect persistent inflammation processes.


Subject(s)
COVID-19 , Positron-Emission Tomography , Humans , COVID-19/diagnostic imaging , Fluorodeoxyglucose F18/metabolism , Brain/diagnostic imaging , Brain/metabolism , Inflammation/metabolism
16.
East. Mediterr. health j ; 29(1): 3-84, 2023-01.
Article in English | WHOIRIS | ID: gwh-366209

ABSTRACT

Eastern Mediterranean Health Journal is the official health journal published by the Eastern Mediterranean Regional Office of the World Health Organization. It is a forum for the presentation and promotion of new policies and initiatives in health services; and for the exchange of ideas concepts epidemiological data research findings and other information with special reference to the Eastern Mediterranean Region. It addresses all members of the health profession medical and other health educational institutes interested NGOs WHO Collaborating Centres and individuals within and outside the Region


المجلة الصحية لشرق المتوسط هى المجلة الرسمية التى تصدرعن المكتب الاقليمى لشرق المتوسط بمنظمة الصحة العالمية. وهى منبر لتقديم السياسات والمبادرات الجديدة فى الصحة العامة والخدمات الصحية والترويج لها، و لتبادل الاراء و المفاهيم والمعطيات الوبائية ونتائج الابحاث وغير ذلك من المعلومات، و خاصة ما يتعلق منها باقليم شرق المتوسط. وهى موجهة الى كل اعضاء المهن الصحية، والكليات الطبية وسائر المعاهد التعليمية، و كذا المنظمات غير الحكومية المعنية، والمراكز المتعاونة مع منظمة الصحة العالمية والافراد المهتمين بالصحة فى الاقليم و خارجه


La Revue de Santé de la Méditerranée Orientale est une revue de santé officielle publiée par le Bureau régional de l’Organisation mondiale de la Santé pour la Méditerranée orientale. Elle offre une tribune pour la présentation et la promotion de nouvelles politiques et initiatives dans le domaine de la santé publique et des services de santé ainsi qu’à l’échange d’idées de concepts de données épidémiologiques de résultats de recherches et d’autres informations se rapportant plus particulièrement à la Région de la Méditerranée orientale. Elle s’adresse à tous les professionnels de la santé aux membres des instituts médicaux et autres instituts de formation médico-sanitaire aux ONG Centres collaborateurs de l’OMS et personnes concernés au sein et hors de la Région


Subject(s)
Cholera , Vaccines, Combined , COVID-19 Testing , Bayes Theorem , Persons With Hearing Impairments , Breast Neoplasms , COVID-19 , Positron-Emission Tomography , Parkinson Disease , Refugees , Hospitals , Mediterranean Region
18.
East Mediterr Health J ; 29(1): 57-62, 2023 Jan 19.
Article in English | MEDLINE | ID: covidwho-2226989

ABSTRACT

Background: COVID-19 was first reported in Egypt on 14 February 2020 and continues to be a major threat to public health. Aims: We studied the incidence of incidental positron emission tomography/computed tomography (PET/CT) signs of COVID-19 in asymptomatic cancer patients and compared this with the number of reported COVID-19 cases during the same period. Methods: We included all cancer patients who underwent PET/CT at Misr Radiology Center, Cairo, between 2 May and 7 August 2020. Results: There were 479 patients who underwent PET/CT primarily for follow-up, and 66 (13.78%) of them showed radiological signs of COVID-19, with the peak incidence in weeks 7-8 of the study. This coincided and strongly correlated with the peak incidence of COVID-19 in Egypt (Pearson's correlation coefficient test = 0.943). Conclusion: The incidence of incidental PET/CT signs of COVID-19 was in accordance with the officially reported incidence of COVID-19 in Egypt between 2 May and 7 August 2020. These results could be helpful for implementing and adjusting public health and social measures during the COVID-19 pandemic.


Subject(s)
COVID-19 , Neoplasms , Humans , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Incidence , Egypt/epidemiology , Pandemics , COVID-19/diagnostic imaging , COVID-19/epidemiology , Positron-Emission Tomography/methods , Neoplasms/diagnostic imaging , Neoplasms/epidemiology
19.
Clin Nucl Med ; 48(3): e149-e150, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2222957

ABSTRACT

ABSTRACT: We describe a case of a 56-year-old woman with primary hyperparathyroidism. 18F-Choline PET/MRI revealed incidental bilateral axillary lymphadenopathy with mild-moderate increased 18F-choline uptake. The patient had her first and third doses of COVID-19 vaccines from the left arm and second dose of vaccine from the right arm before PET examination.


Subject(s)
COVID-19 , Hyperparathyroidism , Lymphadenopathy , Vaccines , Female , Humans , Middle Aged , COVID-19 Vaccines , Radiopharmaceuticals , Positron-Emission Tomography , Choline , Magnetic Resonance Imaging , Lymphadenopathy/diagnostic imaging , Lymphadenopathy/etiology , Positron Emission Tomography Computed Tomography
20.
J Neurol ; 270(4): 1823-1834, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2209336

ABSTRACT

Emerging evidence indicates that the etiologic agent responsible for coronavirus disease 2019 (COVID-19), can cause neurological complications. COVID-19 may induce cognitive impairment through multiple mechanisms. The aim of the present study was to describe the possible neuropsychological and metabolic neuroimaging consequences of COVID-19 12 months after patients' hospital discharge. We retrospectively recruited 7 patients (age [mean ± SD] = 56 years ± 12.39, 4 men) who had been hospitalized for COVID-19 with persistent neuropsychological deficits 12 months after hospital discharge. All patients underwent cognitive assessment and brain (18F-FDG) PET/CT, and one also underwent 18F-amyloid PET/CT. Of the seven patients studied, four had normal glucose metabolism in the brain. Three patients showed various brain hypometabolism patterns: (1) unilateral left temporal mesial area hypometabolism; (2) pontine involvement; and (3) bilateral prefrontal area abnormalities with asymmetric parietal impairment. The patient who showed the most widespread glucose hypometabolism in the brain underwent an 18F-amyloid PET/CT to assess the presence of Aß plaques. This examination showed significant Aß deposition in the superior and middle frontal cortex, and in the posterior cingulate cortex extending mildly in the rostral and caudal anterior cingulate areas. Although some other reports have already suggested that brain hypometabolism may be associated with cognitive impairment at shorter intervals from SarsCov-2 infection, our study is the first to assess cognitive functions, brain metabolic activity and in a patient also amyloid PET one year after COVID-19, demonstrating that cerebral effects of COVID-19 can largely outlast the acute phase of the disease and even be followed by amyloid deposition.


Subject(s)
Alzheimer Disease , COVID-19 , Cognitive Dysfunction , Male , Humans , Middle Aged , Positron Emission Tomography Computed Tomography , Retrospective Studies , COVID-19/complications , COVID-19/diagnostic imaging , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Fluorodeoxyglucose F18/metabolism , Cognition , Alzheimer Disease/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL